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Abstract
Analytical and numerical analysis of ultrafast precessional switching dynamics, in a uniformly
magnetized anisotropic permalloy thin film, described by the Landau–Lifshitz (LL) equation is
presented. Precessional switching is realized in the film by applying a uniform pulsed magnetic
field normal to the easy axis of magnetocrystalline anisotropy. The analytical solution of the LL
equation is expressed in terms of the Jacobi elliptic function, the period of which is related to
the period of the precessional motion. It is shown that switching occurs in the film above a
critical value of the applied field. The switching time decreases steadily when the strength of
the applied magnetic field is increased and further it reduces significantly when the film has
magnetic surface anisotropy in it.

(Some figures in this article are in colour only in the electronic version)

Magnetic recording rapidly approaches the nanometer scale,
and in this direction, the critical issue is the manner and
speed with which the direction of magnetization can be
reversed from one stable configuration to another, preferably
using precessional motion. In the conventional switching
mechanism, there is only one stable equilibrium configuration
after the application of an external magnetic field, namely the
reversed state. In this case, switching is a relaxation process
towards the stable equilibrium, and hence the damping process
is crucial. In the present communication, we use a different
switching mechanism known as precessional switching, in
which the magnetic torque acting on the magnetization of the
medium plays the key role and causes fast precessional motion
around the effective field. This drives the magnetization back
and forth between the initial and the reversed state. To keep
the magnetization in the reversed state, the magnetic field is
switched off when reversal is achieved. The duration of the
applied magnetic field depends on the amount of switching
desired. Thus, in the case of short pulses, the switching
properties are governed by the precession of magnetization,

and in the case of a long pulsed field, damping assumes
importance [1]. In most of the cases, as precessional switching
is very fast, the dissipative or damping effect cannot have any
significant impact on the switching process within this short
duration, and hence it is neglected [2, 3]. The above fact is also
verified here numerically, and it is found that damping does not
noticeably enhance the speed of the switching. This is because
the duration of the pulse in this case is very short. Fassbender
and Bauer [1, 4] theoretically observed and experimentally
proved that switching in a single-domain ellipsoidal particle
is governed by precession in the case of a short pulsed
magnetic field, and damping was found to be important in the
case of long pulsed magnetic fields. Also, they investigated
experimentally the switching dynamics and write endurance
of magnetic tunnel junctions, and achieved switching by
applying a magnetic field pulse of 250 ps duration [5].
The ripple substrate used in the preparation of exchange
coupled systems, such as NiFe/FeMn, enhances anisotropies,
still maintaining magnetization switching behavior through
coherent rotation [7]. Further, it was shown theoretically that
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magnetic damping can be strongly enhanced by implanting
Ni ions in NiFe films [6]. In a recent analytical study on
precessional switching, based on the solution of the Landau–
Lifshitz (LL) equation for uniformly magnetized particles
and thin films, Serpico et al [8] found that the switching
time in these cases is governed by an inverse proportionality
law, in agreement with the results of experiments [9].
The above studies also showed that magnetocrystalline
and shape anisotropies reduce the switching time by the
order of a few nanoseconds. There exists one more
useful anisotropy in magnetic systems, known as magnetic
surface/interface anisotropy, which was identified by Néel [10].
This occurs whenever symmetry is reduced or broken
in the surface/interface, which significantly opposes the
demagnetization and hence is expected to change the switching
character of thin films significantly. The magnetic surface
anisotropy may also be due to the change in composition,
structure, surface adsorption and density of electrons in more
than one atomic layer in addition to surface roughness [11, 12].
Also, stray fields and strain due to lattice misfit between a
single layer and its substrate may contribute to the surface
anisotropy through magnetostriction [13, 14]. More often,
surface anisotropy also arises due to reduced symmetry of the
surrounding surface atoms compared to the bulk. This surface
anisotropy, which favors perpendicular magnetization, is more
dominant when the thin film measures less than 10 nm.

In the present communication, we explore the impact of
magnetic surface anisotropy on the magnetization switching
process in a permalloy (NiFe) magnetic film of 5 nm thickness
with in-plane magnetocrystalline anisotropy. The investigation
is carried out by deriving analytical solution of the governing
LL equation, and by numerically solving the equation when
the magnetic field is applied normal to the easy axis in the film
plane. The associated free energy h(m) is written as

h(m) ≡ ho = 1
2 [Nx m2

x + Nym2
y + Nzm2

z ]
− Am2

x − Bm y − Im2
z , (1)

where A = (2Au/μom2
s ) and I = (Ap/μom2

s d). In
equation (1), the terms proportional to Nx , Ny and Nz represent
the free energy corresponding to the shape anisotropy which
are related to the demagnetization factors along the x, y and
z directions of the thin film, respectively. The nanofilm
considered here is parallel to the xy plane and hence Nx =
Ny = 0 and Nz = 1. The quantity Au in the coefficient A
represents the magnetocrystalline anisotropy coefficient with
the easy axis of magnetization along the x direction and
B is the magnitude of the pulsed magnetic field applied
along the y direction to reverse the magnetization of the film
through coherent rotation [11]. ms and μo are the saturation
magnetization of the film and the magnetic permeability of free
space, respectively. The last term represents the energy due
to magnetic surface anisotropy, in which Ap and d represent
the surface anisotropy constant and the thickness of the film,
respectively. Unlike magnetocrystalline anisotropy, magnetic
surface anisotropy reacts more sensitively to changes in the
chemical state of the surface of the film than the magnetic
moment [11]. The sign of the magnetic surface anisotropy
coefficient Ap, in the case of permalloy thin films, depends

on the composition of Ni and Fe. Measurements of Ap in
permalloy films indicate that the value is negative when the
composition of Ni is below 80%, and only very small positive
values close to zero are measured above the composition
Ni80Fe20 until Ni100 [14]. Also, |Ap| decreases with an increase
of temperature. The magnetization dynamics of the above
system, corresponding to the free energy given in equation (1),
is expressed in terms of the following LL equation:

dm
dt

= −γ [m × Heff(m)], (2)

m2 ≡ m2
x + m2

y + m2
z = 1, (3)

where γ is the gyromagnetic ratio and Heff(m) is the effective
field given by

Heff(m) = −[(Nx − 2A)mx]ex + [B − Ny m y]ey

+ [(2I − Nz)mz]ez . (4)

Here ex , ey, ez represent the unit vectors along the x, y and z
axes, respectively.

The dynamical system described by equation (2) admits
two integrals of motion, representing conservation of the initial
energy ho and the magnetization as given in equations (1)
and (3), respectively. The components of the magnetization,
mx, m y and mz , can be obtained by using the above two
integrals of motion and one of the component equations of the
LL equation. On solving equations (1) and (3) algebraically
through appropriate combinations, we obtain the following
values of m2

x and m2
z in terms of m y:

m2
x ≡ Px(m y) = (2/N1)[(N2/2) − Bm y − (N3/2)m2

y], (5)

m2
z ≡ Pz(m y) = (2/N1)[(N4/2) + Bm y − (N5/2)m2

y], (6)

where N1 = [Nz − 2A − 2I ], N2 = [Nz − 2I − 2ho],
N3 = [Nz − Ny − 2I ], N4 = [2ho − Nx − 2A] and N5 =
[Ny − Nx − 2A]. We find m y , by solving the m y component
LL equation dm y/dt = −N1mxmz after substituting the values
of mx and mz from equations (5) and (6), and by integrating the
resultant equation. The result is

∫
dm y√

Px(m y)Pz(m y)
= −N1

∫ T

0
dt, (7)

which upon evaluation can be expressed in terms of the Jacobi
elliptic function, the derivation of which depends on the nature
of the following roots a± and b± of the polynomial Px(m y) and
Pz(m y):

a± = (−B/N3) ±
√

(B2/N2
3 ) + (N2/N3), (8)

b± = (B/N5) ±
√

(B2/N2
5 ) + (N4/N5). (9)

Here, the roots a− and b− are the lower extrema, and a+ and
b+ are the upper extrema. The allowed values of m y , then
lie between the above lower and upper extremum values. As
the polynomials Px(m y) and Pz(m y) are proportional to m2

x
and m2

z , respectively (see equations (5) and (6)), only those
values of m y that make the polynomials positive are allowed.
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Figure 1. Magnetization trajectories for precessional motion in the
(mx –mz) plane (equations (5) and (6)) for different values of the
external field B below and above Bcrit. Curve (1): B = 0.0020;
curve (2): B = 0.0046; curve (3): B = 0.006.

When the magnetization is initially along the easy axis of
magnetization, we have mx = 1, m y = mz = 0, and in this
case the value of the initial energy ho in equation (1) becomes
(Nx − 2A)/2. Consequently, the values of the upper extrema
a+ and b+ become positive. Since the lower extrema a− and
b− are less than and equal to zero, respectively, we concentrate
on the upper extrema only. For the above initial conditions, the
allowed values of m y , for low values of the applied field, lie in
the range [0, b+], and at high fields, m y takes the values in the
range [0, a+]. Thus, we have two different situations and we
can switch from one to the other when the externally applied
magnetic field exceeds the critical value Bcrit = N5/2, which
can be obtained by equating the values of a+ and b+. In this
case, m y is constrained to vary between the values 0 and a+,
and even though mx vanishes, switching can still occur. On the
other hand, when B � Bcrit, even though mx is always positive,
since m y now lies in the interval 0 and b+, switching does not
occur. For the experimentally measured values [2] given by
Au = −2 × 103 J m−3, μo = 1.257 × 10−6 J A−2 m−1 and
ms = 795 kA m−1, the critical value of the magnetic field is
calculated as Bcrit = 0.005.

We proceed further to find the explicit form of the
analytical solution representing the magnetization precession
by substituting the values of mx and mz from equations (5)
and (6) in equation (7) and obtain

N
∫ y(τ )

y(0)

dy ′
√

Y (y ′)
= ±τ, (10)

where Y (y ′) ≡ Y (m y) = (m y − a+)(m y − a−)(m y −
b+)(m y − b−), τ = (T/2)

√
N3 N5(b+ − b−)(a+ − a−) and

N = (1/2)
√

(b+ − b−)(a+ − a−). The value of the integral
on the left-hand side of equation (10) is expressed in terms of
the Jacobi elliptic function sn(τ ; k) as

N
∫ y(τ )

b−=0

dy ′
√

Y (y ′)
= sn−1

(√
(a+ − a−)(y ′ − b−)

(a+ − b−)(y ′ − a−)
, k

)
,

(11)

where k2 = (a+ − b−)(b+ − a−)/(b+ − b−)(a+ − a−) and k is
its modulus. Using the above result in equation (10), we obtain

m y(τ ) = −a+a−sn2(τ ; k)/[(a+ − a−) − a+sn2(τ ; k)]. (12)

Knowing m y , it is straightforward to derive the components
mx and mz using equations (5) and (6). The components
of magnetization exhibit periodic motion, with the period of
oscillation governed by the complete elliptic integral of the first
kind:

K (k) =
∫ 1

0
[(1 − y ′2)(1 − k2y ′2)]− 1

2 dy ′. (13)

The period of the precessional motion of magnetization is one-
quarter of the period of the Jacobi elliptic function and it is
obtained by comparing equations (10) and (11) as

T = 8K (k)[N3 N5(b+ − b−)(a+ − a−)]− 1
2 . (14)

As k is the modulus of the complete elliptic integral K (k), the
switching time Ts, which is actually the time interval during
which the magnetization vector precesses between its initial
orientation and the reversed direction, can be given as half of
the time period T , i.e. Ts = T/2. The magnetization will
remain in the reversed direction, if the field is switched off
exactly at that time. Of course, the value of the externally
applied magnetic field should be above the critical value Bcrit;
otherwise, switching cannot happen. In order to substantiate
the statement that the switching is possible only above the
critical field, in figure 1, we have plotted the magnetization
trajectories mx(t) and mz(t) during precessional motion for
different values of the external magnetic field, namely B =
0.002, 0.0046 and 0.006, which are both below and above
the critical value. In the figure, trajectory (3) corresponds to
B = 0.006, which is above the critical value, and the remaining
two trajectories (1) and (2), correspond to the case when
B < Bcrit. Trajectory (3) differs drastically from the other
two. This trajectory exhibits reversal of the magnetization from
the initial state of m = (1, 0, 0) to the reversed state m =
(−1, 0, 0). When B < Bcrit, the magnetization trajectories are
confined to the positive mx quadrant, thus proving the absence
of switching in these cases. Figure 2 shows a comparison of
reversed magnetization trajectories for an applied field value of
B = 0.006 in the case of the film with and without magnetic
surface anisotropy.

The above analytical result on magnetization switching
is also confirmed by numerically integrating equation (2)
through forward iteration in space, using a Runge–Kutta (RK)
procedure for the same set of parameter values. The resultant
magnetization curves exactly coincide with the analytical plots
in figures 1 and 2. In figure 2, the state of magnetization mx ,
which was originally along the positive direction, is reversed
in both cases. Further, there is a change in the curvature of
the upper half of the magnetization trajectory, due to reduced
symmetry, when surface anisotropy is present in the film,
which indicates that the magnetization component mx reverses
very quickly from the positive to negative region, and the same
is also reflected in the switching time.

The switching time for reversal of magnetization is
calculated numerically by solving the mx -component LL
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Figure 2. Magnetization trajectories for precessional motion in the
(mx –mz) plane when B = 0.006. The parameters [2, 11] used are
Ap = −0.1 × 10−3 J m−2, Au = −2 × 103 J m−3,
μo = 1.257 × 10−6 J A−2 m−1 and ms = 795 kA m−1. Curves (1)
and (2) represent the magnetization trajectories in the absence and in
the presence of surface anisotropy, respectively. The inset in the
figure represents the zoomed magnetization trajectory 2 (along the
mz axis), when there is surface anisotropy in the film. While curve
(1) is symmetric, curve (2) looks asymmetric because of the presence
of surface anisotropy in the film, which is due to reduced/broken
symmetry in the surface that reduces the switching time due to
reduction in the path length of the trajectory.

equation (2) by iterating forward in time, using the RK method
with the initial condition m = (1, 0, 0) for the same set of
parameter values and field. The applied magnetic field is
switched off precisely at the time of iteration, when the mx

component reaches the value of −1. The results are plotted as
mx against Ts which is rescaled in units of 10−9 in figures 3(a)
and (b), corresponding to the cases when surface anisotropy is
absent and present, respectively. The arrows in both the figures
schematically represent coherent rotation of the mx component
of magnetization towards switching. The projection of CD and
EF on the Ts axis represent the switching time in both the cases.
The calculated values from the figures show that the switching
time reduces from 52 to 0.460 (in units of 10−9) when surface

anisotropy is introduced. However, the analytically calculated
values of the switching time using equation (14) are 60 and
0.468 (in units of 10−9) in the absence and presence of surface
anisotropy, respectively. The small difference that occurs in the
case of analytical and numerical values of switching time is due
to the fact that the analytic value of the period is computed for
the specific value of the modulus k = 0.

In the above, while calculating the switching time, we
treated the critical field as a dimensionless quantity. Now, to
verify our results with that of simulation and experiments, we
first express the value of the critical field Bcrit = 0.005 in
units of kA m−1, which is equivalent to 3.975 kA m−1. The
above value is in very close agreement with the experimentally
reported critical field value (4 kA m−1) of Schumacher et al
[15]. The numerical calculation of the switching time is
repeated for different values of the applied magnetic field
in steps of 5 kA m−1 starting from 5 kA m−1 (i.e. above
the critical field of 4 kA m−1) and going up to 50 kA m−1.
Figures 4(a) and (b) are the plots of the results showing
the behavior of switching time when there is no surface
anisotropy in the film and in the case of the film with surface
anisotropy, respectively. From the figures, one observes that
the magnetization switching time reduces when the strength
of the applied magnetic field is increased. The surface
anisotropy reduces the switching time significantly, which
is evidently seen from figures 4(a) and (b). For instance,
when the applied magnetic field is 10 kA m−1, the switching
time from figures 4(a) and (b) is measured to be 325 ps
and 125 ps, respectively. The reason for this significant
reduction in switching time due to surface anisotropy is
because of the reduced path length for reversal, which is due
to broken/reduced symmetry in the surface of the film. The
values of the switching time we have found for different field
strengths in the present communication closely agree with the
values computed analytically by d’Aquino et al [2] in the case
of NiFe thin film.

In conclusion, it is established that efficient magnetic
switching occurs in permalloy thin films under the joint
influence of different anisotropies and an externally applied
magnetic field above a critical value. In particular, magnetic
surface anisotropy reduces the magnetization switching time
significantly. This is due to reduced/broken symmetry in the

Figure 3. Switching curves: coherent rotation of spins for an applied field B = 0.006. (a) Switching curve when surface anisotropy is absent.
(b) Switching curve when there is surface anisotropy. The projection of CD and EF on the Ts axis represent the switching time in both the
cases.
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Figure 4. Switching time as a function of applied field: the strength of the magnetic field is varied from 5 to 50 kA m−1 in steps of 5 kA m−1.
(a) Behavior of switching time, when there is no surface anisotropy in the film. (b) Behavior of switching time, when there is surface
anisotropy in the film.

surface of the film, which reduces the path length of the
trajectory for reversal.
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